

Indicates a research-demonstrated benefit

Overview

A calculus-based introductory physics curriculum designed to completely replace traditional lectures and laboratories with sequenced activities.

Type of Method	Full curriculum, Classroom structure
X: Level	Designed for: Intro College Calculus-based \$ Can be adapted for: High School \$, Intro College Algebra-based, (<u>Explorations in Physics</u> uses the Workshop Physics style of guided inquiry but it designed for use in non science major classes)
fft Setting	Designed for: Studio ເຈ Can be adapted for: Lecture - Small (<30 students) ເຈ∉, Lab ເຈ∉
🧧 Coverage	Many topics with less depth, The topic coverage has been reduced by about 15% so it is between broad and deep.
🗾 Topics	Mechanics, Electricity / Magnetism, Waves / Optics, Thermal / Statistical, Modern / Quantum
Instructor Effort	Medium
Resource Needs	TAs / LAs, Projector, Computers for students, Advanced lab equipment, Cost for students, Tables for group work
🎦 Skills	Designed for: Conceptual understanding ♥ , Lab skills ♥ , Using multiple representations ♥ , Designing experiments ♥ , collaborative skills Can be adapted for: Problem-solving skills, Metacognition
Research Validation	Based on research into: theories of how students learn , student ideas about specific topics specific topics Demonstrated to improve: conceptual understanding , lab skills , beliefs and attitudes and attitudes , retention of students Studied using: student interviews , research at multiple institutions
Compatible Methods	PhET, JITT, ILDs, Physlets, RealTime Physics, SCALE-UP, OSP, LA Program, MBL, CPU, Responsive Teaching

Teaching materials

Realtime Physics is available in a series of books published by Wiley:

- Module 1: The Core Volume: Mechanics I: Kinematics and Newtonian Dynamics (Units 1-7)
- <u>Module 2</u>: Mechanics II: Momentum, Energy, Rotational and Harmonic Motion, and Chaos (Units 8 15)
- <u>Module 3</u>: Heat Temperature and Nuclear Radiation: Thermodynamics, Kinetic Theory, Heat Engines, Nuclear Decay, and Random Monitoring (Units 16 - 18 and 28)
- Module 4: Electricity and Magnetism (Units 19-27)

